Uniform asymptotic stability implies exponential stability for nonautonomous half-linear differential systems
نویسندگان
چکیده
منابع مشابه
Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations
In this paper, we mainly show the following two statements. (1) A discrete-time Markovian jump linear system is uniformly exponentially stable if and only if it is robustly periodically stable, by using a Gel’fand-Berger-Wang formula proved here. (2) A random linear ODE driven by a semiflow with closing by periodic orbits property is uniformly exponentially stable if and only if it is robustly ...
متن کاملOn asymptotic stability of Prabhakar fractional differential systems
In this article, we survey the asymptotic stability analysis of fractional differential systems with the Prabhakar fractional derivatives. We present the stability regions for these types of fractional differential systems. A brief comparison with the stability aspects of fractional differential systems in the sense of Riemann-Liouville fractional derivatives is also given.
متن کاملOn asymptotic stability of Weber fractional differential systems
In this article, we introduce the fractional differential systems in the sense of the Weber fractional derivatives and study the asymptotic stability of these systems. We present the stability regions and then compare the stability regions of fractional differential systems with the Riemann-Liouville and Weber fractional derivatives.
متن کاملExponential Stability of Linear Systems with Multiple Time Delays
In this paper, a class of linear systems with multiple time delays is studied. The problem of exponential stability of time-delay systems has been investigated by using Lyapunov functional method. We will convert the system of multiple time delays into a single time delay system and show that if the old system is stable then the new one is so. Then we investigate the stability of converted new ...
متن کاملUniform exponential stability for evolution families on the half-line
In this paper we give a characterization for the uniform exponential stability of evolution families {Φ(t, t0)}t≥t0 on R+ that do not have an exponential growth, using the hypothesis that the pairs of function spaces (L1(X), L∞(X)) and (Lp(X), Lq(X)), (p, q) 6= (1,∞), are admissible to the evolution families.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2015
ISSN: 1687-1847
DOI: 10.1186/s13662-015-0494-7